[TOÁN CẤP 3-TRẮC NGHIỆM HHKG 12] #13:Ứng dụng định lý menelaus để tính tỷ số thể tích



Định lý Menelaus và ứng dụng định lý Menelaus để tính tỷ số thể tích khối chóp trong hình học không gian 12. Phục vụ cho việc giải nhanh bài toán trắc nghiệm hhkg 12, thay vì chúng ta phải xử dụng định lý Talet.
Tiểu sử: Menelaus sống trong thời đại đế chế Alexandria. Tương truyền rằng ông được sinh ra vào khoảng năm 70 thời đại Alexandria, ở Ai Cập và mất vào khoảng năm 130.
những gì biết về cuộc đời của Menelaus là rất ít, ngoại trừ ông được Pappus và Proclus gọi là Menelaus của thời Alexandria. Tất cả những gì chúng tôi viết ở đây đều là những phỏng đoán dựa vào khoảng thời gian ông ta sống ở cả Roma và Alexandria, nhưng điều suy đoán hợp lý nhất là ông ta sinh ra ở Alexandria và sống ở đó thời trẻ, sau đó, chuyển đến Roma.

Một quyển toán Ả rập được viết vào khoảng thế kỷ X đã ghi lại về Menelaus như sau: Ông ta sinh ra trước Ptolemy. Ông ấy đã viết “Sách về các mệnh đề khối cầu”, “Kiến thức về các lực và sự phân phối của các vật thể”, 3 quyển sách về “Hình học cơ bản” được Thabit Ibn Qurra chỉnh sửa, và “Sách về tam giác”. Một trong số đó đã được dịch sang tiếng Ả rập.

Các quyển sách của Menelaus chỉ còn lại quyển Sphaerica. Nó liên quan tới tam giác cầu và ứng dụng tam giác cầu trong thiên văn. Đầu tiên, ông ta định nghĩa tam giác cầu và để định nghĩa ở quyển 1: “Một tam giác cầu là phần không gian bị giới hạn bởi các cung của một đường tròn lớn trên mặt cầu, các cung này luôn nhỏ hơn một nửa đường tròn.”

Trong quyển 1 của Sphaerica, ông cũng thiết lập các tương quan cơ bản cho tam giác cầu giống như Euclide đã thiết lập cho tam giác phẳng. Ông đã dùng các cung của đường tròn lớn thay vì dùng các cung của các đường tròn song song trên mặt cầu. Đây là một bước ngoặc trong sự phát triển môn lượng giác cầu. Tuy nhiên, Menelaus có vẻ không vừa ý với phương pháp chứng minh quy nạp thông thường mà Euclide hay dùng. Menelaus không dùng cách này để chứng minh định lý, thế là ông ta đã chứng minh một số định lý trong hình học của Euclide tương ứng cho trường hợp tam giác cầu một cách dễ dàng và bằng các phương pháp khác.

Trong một số trường hợp, tương quan của Menelaus hoàn thiện hơn các tương quan tương tự trong hình học Euclide.

Quyển 2 áp dụng hình học cầu vào nghiên cứu thiên văn. Những kết quả áp dụng rộng rãi nhất là các mệnh đề của Theodosius trong tác phẩm Sphaerica, nhưng Menelaus đưa ra các phương pháp chứng minh tốt hơn.

Quyển 3 liên quan tới lượng giác cầu và bao gồm các định lý của Menelaus. Các định lý này không được biết đến đối với tam giác phẳng.

“Nếu một đường thẳng cắt 3 cạnh bên của một tam giác (một trong những cạnh bên được kéo dài từ một cạnh của tam giác), thế thì tích 3 đoạn thẳng được tạo thành bằng tích 3 cạnh của tam giác”

Menelaus giải thích định lý về tam giác cầu trên (ngày nay gọi là định lý Menelaus) và đưa vào quyển 3 như một mệnh đề đầu tiên. Các đường thẳng có thể hiểu là giao của những đường tròn lớn trên mặt cầu.

Những lời chú giải, bình luận trong tác phẩm Sphaerica đã được dịch sang tiếng Ả rập. Một số tác phẩm vẫn còn nhưng việc xây dựng lại tác phẩm như bản gốc là rất khó khăn. Mặt khác, chúng ta phải biết rằng còn có những việc tìm các kiến thức trước tác phẩm để giải thích, cho nên dễ thấy rằng chúng ta không thể hiểu rõ bản gốc được
Có nhiều công trình khác của Menelaus được các tác giả Ả rập đề cập nhưng đã bị mất cả bản tiếng Hy Lạp lẫn bản tiếng Ả rập. Chúng tôi đưa ra các trích dẫn trên từ một quyển sách Ả rập vào thế kỷ X, nó đã ghi lại những quyển sách được gọi là “Hình học cơ bản”, gồm 3 quyển được Thabit Ibn Qurra dịch sang tiếng Ả rập. Nó cũng ghi lại một công trình khác của Menelaus có tên là “Sách viết về các tam giác” và mặc dù công trình này bị mất nhiều mảnh nhưng một bản dịch tiếng Ả rập đã được tìm thấy.

Proclus đã nói đến hình học Menelaus, không có trong những công trình còn sót lại. Người ta nghĩ rằng loại hình học này đã được đề cập trong các nguyên bản. Sau đây là một chứng minh của một định lý trong tác phẩm “cơ bản” của Euclide do Menelaus chứng minh lại, không dùng phương pháp quy nạp thông thường, chứng minh này nằm trong những công trình còn sót lại, đối với ông ta, định lý hiển nhiên. Chứng minh mới mà Proclus cho rằng của Menelaus đã chứng minh một bản dịch trong bản dịch tác phẩm của Euclide.

“Nếu 2 tam giác có 2 cặp cạnh tương ứng bằng nhau nhưng một trong 2 tam giác có đáy lớn hơn đáy tam giác kia, thì góc xen giữa 2 cạnh của tam giác này sẽ lớn hơn góc xen giữa 2 cạnh của tam giác kia.”

Nguồn: https://collectif-du-chambon.org/

Xem thêm bài viết khác: https://collectif-du-chambon.org/category/giao-duc

Related Post

4 Replies to “[TOÁN CẤP 3-TRẮC NGHIỆM HHKG 12] #13:Ứng dụng định lý menelaus để tính tỷ số thể tích”

  1. cũng có một chút coi như nhận xét. quá trình giảng của ad hơi rối. hơi khó theo dõi vì trình tự đứt đoạn

Leave a Reply

Your email address will not be published. Required fields are marked *